

LIMSI @ WMT'15: Translation Task

Benjamin Marie^{1,2,3}, Alexandre Allauzen^{1,2}, Franck Burlot¹,
Quoc-Khanh Do^{1,2}, Julia Ive^{1,2,4}, Elena Knyazeva^{1,2}, Matthieu Labeau^{1,2},
Thomas Lavergne^{1,2}, Kevin Löser^{1,2}, Nicolas Pécheux^{1,2}, François Yvon¹
(1) LIMSI-CNRS, (2) UniversitÃl' Paris-Sud, (3) Lingua et Machina, (4) Centre Cochrane français

Systems Overview

SMT systems

• N-gram based: NCODE

• Phrase-based: Moses

Tools

• Word alignments: fast_align

• Language model: lmplz, 4-gram LMs pruning all singletons

SOUL

 \bullet Neural network language model and translation models with a Structured OUtput Layer used to rerank the n-best hypotheses produced by the decoder

Data

Compus	Fr-En		Ru-En		$Fi \rightarrow En$	
Corpus	Sentences	Tokens (Fr-En)	Sentences	Tokens (Ru-En)	Sentences	Tokens (Fi-En)
parallel data monolingual data	24.3M	712.8M-597.7M 2.2B-2.7B	2.3M	45.7M-47.3M 834.7M-2.7B	2M	37.3M-51.7M -2.7B

FRENCH-ENGLISH

A new task

• Translate user-generated News discussions

Internal development and test sets

- 3-fold cross-validation: split in 2 parts the 1,500 sentences of the official development set
- Each random split respects document boundaries:
 - Development set: $\sim 1,000$ sentences
 - Test set: ~ 500 sentences
 - Same proportion of documents from each source (*Le Monde* and *The Guardian*) in both sets

Domain adaptation

- No in-domain bilingual data, only in-domain monolingual data
- For translation table adaptation: subsampled the noisy Common Crawl and Giga Fr-En corpus, around 90% of all our bilingual data, using the Modified Moore-Lewis (Axelrod et al., 2011) filtering method (MML)
- For LM adaptation: log-linear combination of our large LM with a smaller one trained only on the monolingual in-domain corpus

N-best list reranking

- ullet Rerank the N-best hypotheses of the decoder with features not used during decoding
- Features: IBM1, in-domain 6-gram POS LM, SOUL models, ratio of POS tag, word posterior probability

Results

MML effect			
Configuration			
baseline			
$10\% \\ 25\% \\ 50\%$	28.63 29.09 28.96		
$10\% \\ 25\% \\ 50\%$	29.14 29.31 29.11		
	ration ine 10% 25% 50% 10% 25%		

Moses and Ncode results				
System		se test En-Fr	officia Fr-En	al test En-Fr
Moses Ncode	29.33 28.66	30.22 30.17	32.16 32.85	35.74 35.00

LM adaptation Configuration Fr-En En-Fr w/o additional LM 29.15 29.56 w/ additional LM 29.33 30.22

Additionnal features			
Feature sets	Fr-En	En-Fr	
baseline	29.33	30.22	
+ IBM1	29.24	30.25	
+ POSLM	29.45	30.28	
+ SOUL	30.20	31.15	
+ TagRatio	29.33	30.30	
$+ \ \mathbf{WPP}$	29.40	30.20	
all	30.45	31.25	

Russian-English

Preprocessing Russian

• Russian normalization: replace all case marks by the corresponding nominative inflection for nouns, pronouns and adjectives.

Postprocessing russian output

- Translate from English to Normalized Russian
- Retrieve the morphology of normalized words with a cascade of Conditional Random fields predicting:
 - POS-tags
 - Gender and number
 - Case
- Generate correct word form according to the former predictions.

Results

Russian-English			
System	Moses	NCODE	
Baseline + Normalized Ru + SOUL	26.85 27.27	26.02 26.44 27.28	
+ SOUL		21.20	

English-Russian		
System	Moses	Ncode
Baseline + SOUL	22.91	$22.97 \\ 24.08$
En-Norm.Ru En-Norm.Ru-Ru	26.35 19.99	26.12 19.88

Error analysis

- Errors made by the NCODE baseline system
- To identify errors at word-level NCODE output is aligned with the reference using METEOR
- Most of the morphological errors are related to case prediction and number

Incorrectly predicted inflections

Word form errors wrt POS

FINNISH TO ENGLISH

 Preliminary experiments on morphological segmentation (with Morfessor) did not yield significative improvement.

Configuration	dev.	test
Baseline	13.2	12.8
+ large LM	16.1	15.7
+ Morph. segmentation	16.2	15.9

CONCLUSION

- For Fr-En, filtering the bilingual data did not bring any gains, while adding an in-domain language model yielded slight improvements
- For Ru-En, small improvements with a tailored normalization of Russian when translating into English