LIMSI @ WMT'15 : Translation Task

(1) LIMSI-CNRS, (2) UniversitÃ̈l Paris-Sud, (3) Lingua et Machina, (4) Centre Cochrane français

Systems Overview

SMT systems

- N-gram based: NCode
- Phrase-based: Moses

Tools

- Word alignments: fast_align
- Language model: lmplz, 4-gram LMs pruning all singletons

SOUL

- Neural network language model and translation models with a Structured OUtput Layer used to rerank the n-best hypotheses produced by the decoder

Data

FRENCH-ENGLISH

A new task

- Translate user-generated News discusssions

Internal development and test sets

- 3 -fold cross-validation: split in 2 parts the 1,500 sentences of the official development set
- Each random split respects document boundaries:
- Development set: $\sim 1,000$ sentences
- Test set: ~500 sentences
- Same proportion of documents from each source (Le Monde and The Guardian) in both sets

Domain adaptation

- No in-domain bilingual data, only in-domain monolingual data
- For translation table adaptation: subsampled the noisy Common Crawl and Giga Fr-En corpus, around 90% of all our bilingual data, using the Modified Moore-Lewis (Axelrod et al., 2011) filtering method (MML)
- For LM adaptation: log-linear combination of our large LM with a smaller one trained only on the monolingual in-domain corpus
N-best list reranking
- Rerank the N-best hypotheses of the decoder with features not used during decoding
- Features: IBM1, in-domain 6-gram POS LM, SOUL models, ratio of POS tag, word posterior probability

Results

MML effect		
Configuration	Fr-En	
baseline	29.33	
before	10%	28.63
	25%	29.09
	50%	28.96
after	10%	29.14
	25%	29.31
	50%	29.11

Moses and Ncode results

Moses and Ncode results					$\begin{aligned} & + \text { POSLM } \\ & + \text { SOUL } \\ & + \text { TagRatio } \\ & + \text { WPP } \end{aligned}$	$\begin{aligned} & 29.45 \\ & 30.20 \\ & 29.33 \\ & 29.40 \end{aligned}$	$\begin{aligned} & 30.28 \\ & 31.15 \\ & 30.30 \\ & 30.20 \end{aligned}$
System	in-house test		official test				
	Fr-En	En-Fr	Fr-En	En-Fr			
Moses	29.33	30.22	32.16	35.74		30.45	31.25
NCODE	28.66	30.17	32.85	35.00	all	30.45	31.25

Finnish to English

- Preliminary experiments on morphological segmentation (with Morfessor) did not yield significative improvement.

LM adaptation			
Configuration		Fr-En	
En-Fr			
w/o additional LM	29.15	29.56	
w/ additional LM	29.33	30.22	
Additionnal features			
Feature sets	Fr-En	En-Fr	
baseline	29.33	30.22	
+ IBM1	29.24	30.25	
+ POSLM	29.45	30.28	
+ SOUL	30.20	31.15	
+ TagRatio	29.33	30.30	
+ WPP	29.40	30.20	
all	30.45	31.25	

Configuration	dev.	test
Baseline	13.2	12.8
+ large LM	16.1	15.7
+ Morph. segmentation	16.2	15.9

RUSSIAN-ENGLISH

Preprocessing Russian

- Russian normalization: replace all case marks by the corresponding nominative inflection for nouns, pronouns and adjectives.

Postprocessing russian output

- Translate from English to Normalized Russian
- Retrieve the morphology of normalized words with a cascade of Conditional Random fields predicting:
- POS-tags
- Gender and number
- Case
- Generate correct word form according to the former predictions.

Results

Russian-English			English-Russian		
System	Moses		System	Moses	NCode
System	Moses	NCODE	Baseline	22.91	22.97
Baseline	$\begin{aligned} & 26.85 \\ & 27.27 \end{aligned}$	26.02	+ SOUL		24.08
+ SOUL		27.28	En-Norm.Ru	26.35	26.12
			En-Norm.Ru-Ru	19.99	19.88

Error analysis

- Errors made by the Ncode baseline system
- To identify errors at word-level NCODE output is aligned with the reference using METEOR
- Most of the morphological errors are related to case prediction and number

Conclusion

- For Fr-En, filtering the bilingual data did not bring any gains, while adding an in-domain language model yielded slight improvements
- For Ru-En, small improvements with a tailored normalization of Russian when translating into English

