

# LIMSI@WMT'14 Medical Translation Task

Nicolas Pécheux<sup>1,2</sup>, Li Gong<sup>1,2</sup>, Quoc Khanh Do<sup>1,2</sup>, Benjamin Marie<sup>2,3</sup>, Yulia Ivanishcheva<sup>2,4</sup>, Alexandre Allauzen<sup>1,2</sup>, Thomas Lavergne<sup>1,2</sup>, Jan Niehues<sup>2</sup>, Aurélien Max<sup>1,2</sup>, François Yvon<sup>2</sup>

(1) Université Paris-Sud, (2) LIMSI-CNRS, (3) Lingua et Machina, (4) Centre Cochrane français



### HIGHLIGHTS



ullet Subtask of sentence translation from summaries, English o French

In what circumstances do granulomatous and eosinophilic gastritis occur? What are the etiologies of dysphagia in gastroesophageal reflux disease?

• Successful approach that makes use of two flexible translation systems

#### DATA SOURCES

| Corpus          | Tokens (en) | weigh |
|-----------------|-------------|-------|
| Сорра           | 10M         | -3    |
| EMEA            | 6M          | 26    |
| Pattr-Abstracts | 20M         | 22    |
| Pattr-Claims    | 32M         | 6     |
| Pattr-Titles    | 3M          | 4     |
| UMLS            | 8M          | -7    |
| Wikipedia       | 17k         | -5    |
| NewsCommentary  | 4M          | 6     |
| Europarl        | 54M         | -7    |
| Giga            | 260M        | 27    |
| all             | 397M        | 33    |

• Combining both data sources drastically boosts performance

|         | DEVEL          | Test           |
|---------|----------------|----------------|
| medical | $42.2 \pm 0.1$ | $39.6 \pm 0.1$ |
| WMT'13  | $43.0 \pm$ 0.1 | $41.0 \pm 0.0$ |
| both    | $48.3\pm$ 0.1  | $45.4 \pm 0.0$ |

BLEU scores obtained by NCODE

#### PART-OF-SPEECH TAGGING

- Medical data exhibit different syntactic constructions and a specific vocabulary
- We use a specific model trained on medical data

| PoS tagging | DEVEL          | Test           |
|-------------|----------------|----------------|
| Standard    | $47.9 \pm 0.0$ | $44.8 \pm 0.1$ |
| Specialized | $48.3 \pm 0.1$ | $45.4 \pm 0.0$ |

#### PROXY TEST SET

- Only a small development set is available (500 sentences)
- This makes both system design and tuning challenging
- We created an internal dev/test set (LMTest) by extracting sentences from Pattr-Abstracts

| DEVEL          | LMTEST                       | NewsTest12     | Test           |
|----------------|------------------------------|----------------|----------------|
| $48.3 \pm 0.1$ | $46.8 \pm 0.1$               | $26.2 \pm$ 0.1 | 45.4± 0.0      |
| $41.8 \pm 0.2$ | $\boxed{48.9 \pm 0.1}$       | $18.5 \pm 0.1$ | 40.1± 0.1      |
| $39.8 \pm 0.1$ | $37.4 \scriptstyle{\pm}~0.2$ | $29.0 \pm 0.1$ | $39.0 \pm 0.3$ |

## Error Analysis

|              | extra | $missing \hspace{1.5cm} incorrect$ |        |         |      | unknown |      |       |      |      |     |
|--------------|-------|------------------------------------|--------|---------|------|---------|------|-------|------|------|-----|
|              | word  | content                            | filler | disamb. | form | style   | term | order | word | term | all |
| SysComb      | 4     | 13                                 | 20     | 47      | 62   | 8       | 18   | 21    | 1    | 11   | 205 |
| OTF+VSM+Soul | 4     | 4                                  | 31     | 44      | 82   | 6       | 20   | 42    | 3    | 12   | 248 |

Manual error analysis following (Vilar et al., 2006) for the first 100 test sentences.

#### Systems

n-gram approach to SMT

OTF — on-the-fly estimation of the parameters of a standart phrasebased model

VSM — Vector space model to perform domain adaptation

MIRA

**SOUL** — Continous space models working on top of conventional language models (reranking); adapted language model (LM\*)

SysComb — Combination of both systems (reranking)

| DEVEL | Test                                                 |
|-------|------------------------------------------------------|
| 48.5  | 45.2                                                 |
| 49.8  | 45.9                                                 |
| 50.1  | 47.0                                                 |
| 46.6  | 42.5                                                 |
| 46.9  | 42.8                                                 |
| 48.4  | 44.2                                                 |
| 49.7  | 44.9                                                 |
| 50.7  | 46.5                                                 |
|       | 48.5<br>49.8<br>50.1<br>46.6<br>46.9<br>48.4<br>49.7 |

- NCODE outperforms OTF by 2.8 BLEU points
- Vector space model does not yield here any improvement
- Continous space language models yield gains of up to 2 BLEU points
- System combination gain does not transfer to the test set

#### CONCLUSIONS

- Moderate to high-quality translations
- Lack of an internal test challenging
- More careful integration of medical terminology proved necessary

