Confidence-based Rewriting of Machine Translation Output

Benjamin Marie^{1,2}

Aurélien Max^{1,3}

(1) LIMSI-CNRS

(2) Lingua et Machina

(3) Université Paris-Sud

Introduction		
Introduction		

- Phrase-Based Statistical Machine Translation (PBSMT) systems use many features during decoding to assess the quality of translation hypotheses
- ► For other features, several difficulties of integration to overcome, e.g. :
 - need of a complete hypothesis

e.g. sentence-level syntactic features

computational cost

e.g. Neural Network language models

need of a first decoding

e.g. a posteriori confidence models

How to use such features *efficiently* in PBSMT ?

Reranking of translation hypotheses

A solution

- rerank the n-best list of the decoder using new, complex features
- can achieve good performance with some features (Och et al., 2004; Carter and Monz, 2011; Le et al., 2012; Luong et al., 2014)

2 strong limitations

- lack of diversity (Gimpel et al., 2013)
- inherit a limited selection of hypotheses made by the decoder

	Rewriter		

A rewriting system

A rewriter to extend the exploration

idea: search for new promising hypotheses not in the n-best list

seed

Rewriter		

A rewriting phrase table

seed

	Rewriter		

A set of rewriting operations

seed

Rewriter		

Neighborhood generation

Neighborhood generation : replace

Neighborhood generation : replace

Neighborhood generation : replace

he has refused a test now . he refused a test now . he had refused a test now . it has refused a test now . it refused a test now .

Neighborhood generation : split

Neighborhood generation : split

Neighborhood generation : split

he has refused a test now . he is refused a test now . he had refused a test now .

- it has refused a test now .
- it have refused a test now .

Neighborhood generation : merge

Neighborhood generation : merge

Neighborhood generation : merge

	Rewriter		
Rewriting ph	arase table		

Building the rewriting table

- Method 1: take the i best translations according to p(e|f)
- Method 2: take the bi-phrases appearing in the decoder k-best list

Method 1

- produces very large neighborhoods
- not suitable for costly features

Method 2

- produces very small and adapted rewriting phrase table for each sentence
- keeps only bi-phrases for which the decoder was the most confident

Rewriter		

Neighborhood generation

	Rewriter		
Develoimen	ما به او به ما با	la a vla a a d	

Objective

rank (manageable) neighborhoods using complex features

Training the reranker: 2 kinds of examples

- n-best produced by the decoder
- neighborhoods produced by one iteration of rewriter

Training algorithm

kb-mira (Cherry and Foster, 2012)

	Rewriter		
Develoimen	ما به او به ما با	la a vla a a d	

	Rewriter		
Greedy sear	ch		

	Rewriter		
Greedy sear	ch		

	Rewriter		
Greedy sea	rch		

- ► greedy search algorithm for PBSMT (Langlais et al., 2007)
 - choose at each iteration the best rewriting/operation according to the (new) scoring function

Source Reference	il a refusé le test immédiatement . he refused the test straight away .
seed	il a1 refusé2 le test3 immédiatement .4
\downarrow	he has ₁ refused ₂ a test ₃ now $.4$

	Rewriter		
Groody so:	arch		

- Greedy search
 - ► greedy search algorithm for PBSMT (Langlais et al., 2007)
 - choose at each iteration the best rewriting/operation according to the (new) scoring function

Source Reference	il a refusé le test immédiatement . he refused the test straight away .
seed	il a1 refusé2 le test3 immédiatement .4
\downarrow	he has $_1$ refused $_2$ a test $_3$ now $_4$
merge	il a refusé ₁ le test ₂ immédiatement .3
iteration 1	he refused ₁ a test ₂ now .3

	Rewriter		
Creedy coor	ah		

- Greedy search
 - ► greedy search algorithm for PBSMT (Langlais et al., 2007)
 - choose at each iteration the best rewriting/operation according to the (new) scoring function

Source Reference	il a refusé le test immédiatement . he refused the test straight away .
seed	il a1 refusé2 le test3 immédiatement .4
\downarrow	$[he has_1] [refused_2] [a test_3] [now4]$
merge	il a refusé ₁ le test ₂ immédiatement 3
iteration 1	he refused ₁ a test ₂ now 3
split	il a refusé ₁ le test ₂ immédiatement ₃ .4
iteration 2	he refused ₁ a test ₂ straight away ₃ .4

	Rewriter		
Cready	arab		

Greedy search

- ► greedy search algorithm for PBSMT (Langlais et al., 2007)
 - choose at each iteration the best rewriting/operation according to the (new) scoring function

Source Reference	il a refusé le test immédiatement . he refused the test straight away .
seed	il a1 refusé2 le test3 immédiatement .4
\downarrow	he has ₁ refused ₂ a test ₃ now $_{.4}$
merge	il a refusé ₁ le test ₂ immédiatement 3
iteration 1	he refused ₁ a test ₂ now 3
split	il a refusé ₁ le test ₂ immédiatement ₃ .4
iteration 2	he refused 1 a test 2 straight away 3 4
replace	il a refusé1 le test2 immédiatement3 .4
iteration 3	he refused 1 the test 2 straight away 3 $\overline{\cdot 4}$

	Experiments	

Experiments

	Experiments	

The whole framework

		Experiments	
Experimenta	l settinas		

► translation tasks: English↔French

- Ted Talks
- WMT'14 medical
- WMT'12

baseline systems

- Moses PBSMT (Koehn et al., 2007)
- kb-mira reranker using all the features below

features

- decoder features : all the features used by the 1st-pass decoder
- neural network models : 10-gram monolingual (Le et al., 2011) and bilingual (Le et al., 2012) SOUL models
- Part-of-speech language model: 6-gram model
- IBM1 scores
- phrase posterior probabilities

	Experiments	
Results		

Task	system	en-fr BLEU Δ	fr-en BLEU Δ
WMT'12	1-pass Moses	31.8	29.4
	reranker	32.9 +1.1	30.3 +0.9
TED Talks	1-pass Moses	32.3	32.5
	reranker	32.8 +0.5	33.0 +0.5
WMT'14 medical	1-pass Moses reranker	38.3 41.8 +3.5	

⇒ moderate (TED Talks) to strong (medical) improvements with reranker over the 1st-pass decoder

	Experiments	
Results		

Task	system	en-fr BLEU Δ	fr-en BLEU Δ
WMT'12	1-pass Moses	31.8	29.4
	reranker	32.9 +1.1	30.3 +0.9
	rewriter	33.5 +1.7	30.8 +1.4
TED Talks	1-pass Moses	32.3	32.5
	reranker	32.8 +0.5	33.0 +0.5
	rewriter	33.7 +1.4	33.4 +0.9
WMT'14 medical	1-pass Moses reranker rewriter	38.3 41.8 +3.5 43.4 +5.1	

 \Rightarrow rewriter increases by ${\sim}50\%$ the reranker improvement

	Experiments	
Results		

Task	system	en-fr BLEU Δ	fr-en BLEU Δ
WMT'12	1-pass Moses	31.8	29.4
	reranker	32.9	30.3
	rewriter	33.5 +0.6	30.8 +0.5
TED Talks	1-pass Moses	32.3	32.5
	reranker	32.8	33.0
	rewriter	33.7 +0.9	33.4 +0.4
WMT'14 medical	1-pass Moses reranker rewriter	38.3 41.8 43.4 +1.6	

 \Rightarrow rewriter increases by ${\sim}50\%$ the <code>reranker</code> improvement

		Analysis	
Analysis:	outline		

- 1 training procedure
- 2 rewriting phrase table
- 3 best attainable performance
- 4 performance depending on translation quality
- 5 sentence-level performance
- 6 other findings

		Analysis	
Training o	vamples		

raining	examples	

	dev	tes	t	
	BLEU	BLEU	Δ	
reranker	44.1	41.8		
rewriter training				
1-pass Moses 1,000-best rewriter neighborhoods	44.1 44.5	39.2 43.4	-2.6 +1.6	

 \Rightarrow rewriter **must** be trained on rewriter neighborhoods

	Analysis	
waaa tabla w		

Rewriting phrase table performance

Method 1: extraction according to p(e|f)

damages reranker output

Method 2: extraction from a k-best list

• improvements for all tested k, even for small values (best for k = 10,000)

		Analysis			
_					

Rewriting phrase table performance

Method 1: extraction according to p(e|f)

damages reranker output

Method 2: extraction from a *k*-best list

• improvements for all tested k, even for small values (best for k = 10,000)

		Analysi	s Conclusion			
_						

Rewriting phrase table performance

Method 1: extraction according to p(e|f)

damages reranker output

Method 2: extraction from a k-best list

improvements for all tested k, even for small values (best for k = 10,000)

	Analysis	

Rewriting phrase table size

rewriting phrase table		unique bi-phrases	Δ -BLEU w.r.t. reranker
Method 1	<i>i</i> = 5	85,530	-0.8
	/ = 10	149,887	-0.7
Method 2	<i>k</i> = 10	21,398	+0.6
	k = 100	28,730	+1.1
	K = 1,000 k = 10,000	33,929	+1.2
	K - 10,000	30,433	+1.0

compact phrase tables when extracted from k-best lists (Method 2)

• much larger when extracted according to p(e|f) (Method 1)

Best attainable performance

- Greedy Oracle Search (GOS) (Marie and Max, 2013)
 - make the best local decision at each iteration
 - use sentence-BLEU as scoring function

baseline		te BLEU	st 🛆
re	eranker	41.8	
rewriting	g phrase table		
method 1	i = 5 i = 10	50.6 54.5	+8.8 +12.7
method 2	k = 10 k = 100 k = 1,000 k = 10,000	45.9 50.2 53.3 58.7	+4.1 +8.4 +11.5 +16.9

 \Rightarrow strong oracle improvements, even for compact rewriting tables

 \Rightarrow extracting from *k*-best lists much more promising

⇒ larger improvements on bad/difficult translations

Sentence-level performance

- according to sentence-BLEU, after rewriting :
 - 40.8% better
 - 29.2% worse
 - 30% unchanged
- \Rightarrow large room for further improvement

Sentence-level performance: semi-oracle experiment

- protecting the phrases appearing in the reference translation: +1.5 BLEU
- \Rightarrow strong value of better confidence estimates

		Analysis	
Other finding	gs		

- 1 70% of **new** hypotheses **not** in 1-pass Moses 1,000-best
- 2 on average (only) 116 hypotheses per sentence in the neighborhood
- **3** searching using a **beam** of size 10: $1.6 \rightarrow 1.9$ BLEU
- 4 manual evaluation revealed both fluency and accuracy improvements

		Conclusion
Conclusion		

- an efficient and simple procedure to make a better use of features difficult to integrate during decoding
- produces useful hypotheses not in the decoder n-best list
- relies on the decoder confidence to extract the rewriting rules
- improvements on 3 different tasks and 2 language directions over a reranked baseline using the same features

		Conclusion
Future work		

- exploit more features : lexical-coherence (Hardmeier et al., 2012), syntactic features (Post, 2011), word posterior probability (Ueffing and Ney, 2007), etc.
- identify correct phrases to protect them from rewriting
- adapt rewriter's objective function to the sentence
- use a paraphrase operation rewriting the source sentence to produce new target phrases (Marie and Max, 2013)
- **use automatic alternative reference translations** (Madnani and Dorr, 2013)
- use rewriter in interaction with human translators

		Conclusion
Future work		

- exploit more features : lexical-coherence (Hardmeier et al., 2012), syntactic features (Post, 2011), word posterior probabiliy (Ueffing and Ney, 2007), etc.
- identify correct phrases to protect them from rewriting
- adapt rewriter's objective function to the sentence
- use a paraphrase operation rewriting the source sentence to produce new target phrases (Marie and Max, 2013)
- ► use automatic alternative reference translations (Madnani and Dorr, 2013)
- use rewriter in interaction with human translators

		Conclusion
Future work		

- exploit more features : lexical-coherence (Hardmeier et al., 2012), syntactic features (Post, 2011), word posterior probabiliy (Ueffing and Ney, 2007), etc.
- identify correct phrases to protect them from rewriting
- adapt rewriter's objective function to the sentence
- use a paraphrase operation rewriting the source sentence to produce new target phrases (Marie and Max, 2013)
- ► use automatic alternative reference translations (Madnani and Dorr, 2013)
- use rewriter in interaction with human translators

		Conclusion
Future work		

- exploit more features : lexical-coherence (Hardmeier et al., 2012), syntactic features (Post, 2011), word posterior probabiliy (Ueffing and Ney, 2007), etc.
- identify correct phrases to protect them from rewriting
- adapt rewriter's objective function to the sentence
- use a paraphrase operation rewriting the source sentence to produce new target phrases (Marie and Max, 2013)
- **use automatic alternative reference translations** (Madnani and Dorr, 2013)
- use rewriter in interaction with human translators

		Conclusion
Future work		

- exploit more features : lexical-coherence (Hardmeier et al., 2012), syntactic features (Post, 2011), word posterior probabiliy (Ueffing and Ney, 2007), etc.
- identify correct phrases to protect them from rewriting
- adapt rewriter's objective function to the sentence
- use a paraphrase operation rewriting the source sentence to produce new target phrases (Marie and Max, 2013)
- use automatic alternative reference translations (Madnani and Dorr, 2013)
- use rewriter in interaction with human translators

		Conclusion
Future work		

- exploit more features : lexical-coherence (Hardmeier et al., 2012), syntactic features (Post, 2011), word posterior probabiliy (Ueffing and Ney, 2007), etc.
- identify correct phrases to protect them from rewriting
- adapt rewriter's objective function to the sentence
- use a paraphrase operation rewriting the source sentence to produce new target phrases (Marie and Max, 2013)
- use automatic alternative reference translations (Madnani and Dorr, 2013)
- use rewriter in interaction with human translators

Thanks for listening ! Questions ?

Confidence-based Rewriting of Machine Translation Output

Benjamin Marie & Aurélien Max emnlp₂₀₁₄

- Carter, S. and Monz, C. (2011). Syntactic discriminative language model rerankers for statistical machine translation. <u>Machine Translation</u>.
- Cherry, C. and Foster, G. (2012). Batch Tuning Strategies for Statistical Machine Translation. In Proceedings of NAACL, Montréal, Canada.
- de Gispert, A., Blackwood, G., Iglesias, G., and Byrne, W. (2012). N-gram posterior probability confidence measures for statistical machine translation: an empirical study. <u>Machine Translation</u>.
- Gimpel, K., Batra, D., Dyer, C., Shakhnarovich, G., and Tech, V. (2013). A Systematic Exploration of Diversity in Machine Translation. In <u>Proceedings</u> of EMNLP 2013, Seatlle, USA.
- Hardmeier, C., Nivre, J., and Tiedeman, J. (2012). Document-Wide Decoding for Phrase-Based Statistical Machine Translation. In <u>Proceedings of</u> <u>EMNLP</u>, Jeju Island, Korea.
- Koehn, P., Hoang, H., Birch, A., Callison-burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E. (2007). Moses: Open Source Toolkit for Statistical Machine Translation. In <u>Proceedings of ACL</u>, demos, Prague, Czech Republic.

- Langlais, P., Patry, A., and Gotti, F. (2007). A Greedy Decoder for Phrase-Based Statistical Machine Translation. In <u>Proceedings of</u> <u>Conference on Theoretical and Methodological Issues in Machine</u> <u>Translation (TMI)</u>, Skovde, Sweden.
- Le, H.-S., Allauzen, A., and Yvon, F. (2012). Continuous Space Translation Models with Neural Networks. In <u>Proceedings of NAACL</u>, Montréal, Canada.
- Le, H.-S., Oparin, I., Allauzen, A., Gauvain, J.-L., and Yvon, F. (2011). Structured Output Layer Neural Network Language Model. In <u>Proceedings</u> of ICASSP, Prague, Czech Republic.
- Luong, N.-Q., Besacier, L., and Lecouteux, B. (2014). Word Confidence Estimation for SMT N -best List Re-ranking. In <u>Proceedings of the</u> <u>Workshop on Humans and Computer-assisted Translation (HaCaT)</u>, Gothenburg, Sweden.
- Madnani, N. and Dorr, B. J. (2013). Generating Targeted Paraphrases for Improved Translation. <u>ACM Transactions on Intelligent Systems and</u> Technology, special issue on Paraphrasing, 4(3).
- Marie, B. and Max, A. (2013). A Study in Greedy Oracle Improvement of Translation Hypotheses. In <u>Proceedings of IWSLT</u>, Heidelberg, Germany.

- Och, F. J., Gildea, D., Khudanpur, S., Sarkar, A., Yamada, K., Fraser, A., Kumar, S., Shen, L., Smith, D., Eng, K., Jain, V., Jin, Z., and Radev, D. (2004). A Smorgasbord of Features for Statistical Machine Translation. In Proceedings of NAACL, Boston, USA.
- Post, M. (2011). Judging Grammaticality with Tree Substitution Grammar Derivations. In Proceedings of ACL, short papers, Portland, USA.
- Ueffing, N. and Ney, H. (2007). Word-Level Confidence Estimation for Machine Translation. <u>Computational Linguistics</u>.